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Wa�~m;b�~n =
1

2
�ab(U��(~m�)�~n;~m+�̂ (5)

+ U y
��(~n�)�~n;~m��̂)

where U (~n�) are the linkmatrices associated with
the lattice gauge �elds, and the parameter r is
usually taken to be 1. The Wilson-Dirac oper-
ator is neither skewhermitian (unless r = 0) nor
hermitian. The Wilson term explicitly breaks chi-
ral symmetry and lifts the doubling degeneracy
of the pure lattice Dirac action. As a result the
eigenvalue spectrum of the Wilson-Dirac operator
is no longer purely imaginary but �lls a region of
the complex plane. The discrete symmetries of
the Wilson-Dirac operator imply that the eigen-
values appear in complex conjugate pairs, (�; ��)
and obey reection symmetries, (�;��). In ad-
dition, there can be precisely real, nondegenerate
eigenvalues [9].
All the properties expected to be important in

QCD in four dimensions are present in QED2 and
in two dimensions the full set of eigenvalues and
eigenvectors can be computed on moderate size
lattices [6,9,10]. Unlike in the continuum, the real
eigenvalues do not occur at a speci�c value asso-
ciated with the zero mass limit. In fact, even in
a single con�guration, there is no unique de�ni-
tion of the massless limit. This limit can only
be de�ned by an ensemble average. These uc-
tuations in the positions of real eigenvalues is
a direct consequence of chiral symmetry break-
ing which occurs as an artifact of Wilson-Dirac
fermions. Furthermore, this uctuation in the
positions of real eigenvalues will cause spurious
poles in the fermion propagator for light fermion
masses. This is the origin of the expectional con-
�gurations encountered in quenched calculations.
Our detailed QED2 study of real eigenvalues near
the mass zero continuum branch concluded the
following [6]: (1) For �xed physical volume and
light fermion mass, the problem with spurious
poles (i.e. nearby real eigenvalues) is acute at
strong coupling and decreases as � increases; (2)
The total number of real eigenvalues grows with
physical volume for �xed �; and (3) No decrease
in the frequency of real eigenvalues in the physi-
cal light mass region is seen using O(a) improved
SW action.

3. Exceptional Con�gurations in Lattice

QCD

In four dimensions, it is di�cult to study the
full eigenvalue spectrum[11]. Fortunately for our
purposes, we only need to �nd the real eigenvalues
near the mass zero continuum branch.
The zero modes appear as poles in the quark

propagator

(D � rW )fi = �ifi (6)

S(x; y; fU (A)g)AB = (7)
X

eigenvalues

fiA(x;U )�giB(y; U )

�i + 1=2�

mq = 1=2�� 1=2�c (8)

where � is the hopping parameter, with the crit-
ical value �c determined from the ensemble en-
semble average pion mass. For modes with �i <
�1=2�c, the propagator has poles corresponding
to positive mass values. The position of these
poles can be established by studying any smooth
projection of the fermion propagator as a func-
tion of �. We will use the integrated pseudoscalar
charge to probe for the shifted real eigenvalues

Q(�) =

Z
d4x < � (x)5 (x) > (9)

This charge is calculated using the same method
used by Kuramashi et al.[12] to study hairpin di-
agrams and the �0 mass. The charge is a global
quantity which samples the full lattice volume.
By computing its value for a range of kappa val-
ues we can search for poles in the fermion propa-
gator. Near a pole, we should �nd

Q(�)!
R

1=�� 1=�pole
(10)

In the continuum, the residue R would be directly
proportional to the global winding number of the
gauge �eld con�guration[10].
This procedure works well if the poles are in the

visible region, � < �c. There the pole positions
and the relevant eigenvalues can be determined
to great precision. An example of these scans is
shown in Figure 1 for Wilson fermions. The exis-
tence of isolated poles is obvious. The value of the
integrated pseudoscalar charge can be computed,
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Figure 2. The frequency of poles in the quark
propagator versus quark mass. The results use
SW fermions on a 83 � 16 lattice with � = 5:5.
Analysis done by Jim Simone (unpublished).

with no appreciable slowdown in convergence, for
values of the hopping parameter arbitrarily close
to the pole position.
Scans for real poles in the light mass region

have now been done for a wide variety of lat-
tice couplings (� = 5:5; 5:7; 5:9; and6:1) and vol-
umes (83 � 16; 123 � 24; 163 � 32 and 243 � 48)
with both unimproved and O(a) improvedWilson
fermions. The frequency of poles versus �, vol-
ume, and quark mass is in generally good agree-
ment with expectations from QED2. For exam-
ple, at � = 5:5 on a 83� 16 lattice with O(a) im-
proved Wilson fermions (cSW = 1:67), 255 poles
were found in 500 con�gurations. The distribu-
tion of poles for this case is shown in Figure 2.

A detailed study was performed on a sample of
50 gauge con�gurations on a 123 � 24 lattice at
� = 5:9 available from the ACPMAPS library
[13]. We determined eigenvalues for both the
standard Wilson-Dirac action and a Clover ac-
tion with a clover coe�cient of CSW = 1:91. Six
con�gurations were found with visible poles for
each choice of fermion action. These results are
shown in Table I. Only one gauge con�guration is
in common between the two sets of visible poles.
The direct relationship between a nearby pole

in the quark propagator and an exceptional con-
�guration at a given quark mass is graphically
demonstrated in Figure 3. There the time vari-
ation of all 50 pion propagators for �q = ��q =
0:1595 is shown. The con�gurations already iden-
ti�ed in Table 1 as having a pole in the visible
region are indicated with open circles. The pion
propagator is \exceptional" if and only if the con-
�guration has a visible pole in Table 1. Further-
more, the most exceptional con�guration (132)
has its visible pole at � = 0:1594870 closest to
� = 0:1595.
As the fermion action is varied, the real eigen-

values move. Therefore, the visible poles, and the
corresponding identi�cation of exceptional con-
�gurations is a sensitive property of the fermion
action and not a property unique to the partic-
ular gauge con�guration. For example, a small
change in the clover coe�cient may remove a vis-
ible pole for one con�guration and add a visible
pole for another con�guration, completely chang-
ing identi�cation of the exceptional con�gura-
tions. Since only a collision of two real modes al-
lows the pairing required to move o� the real axis,
small changes in the parameters of the fermion
action should not change the number of isolated
real modes but only their visibility.

4. The Modi�ed Quenched Approximation

Since the e�ects of the fermion loop determi-
nant are ignored in the quenched approximation,
this approximation is very sensitive to singular-
ities of the fermion propagator which may be
encountered in particular formulations of lattice
fermions. In particular, the eigenvalue spectrum
of Wilson-Dirac fermions generally contains a
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Table 1
Visible poles for a set of 50 gauge con�gurations.

Wilson Action
Conf. �pole PS residue
114000 0.1588539 -2.1463
132000 0.1594870 -2.4800
148000 0.1593216 -3.6325
160000 0.1593803 -2.8494
182000 0.1593803 +2.5036
194000 0.1595557 -5.3055
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132

160

182
194

κq=κq
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Wilson β=5.9 123x24
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no visible pole

Figure 3. Pion propagators for � = :1595 showing
all 50 con�gurations. Visible poles (open circles)
and all others (solid dots).

number of isolated real eigenvalues. In the contin-
uum limit, these eigenvalues are identi�ed as zero
modes and occur at precisely zero fermion mass.
In the Wilson-Dirac formulation, these eigenval-
ues shift due to the chiral symmetry breaking gen-
erated by the Wilson-Dirac action. Some of these
eigenvalues are shifted to positive mass which
causes singular behavior for the fermion propa-
gators computed for a mass near a shifted eigen-
value. In the quenched approximation, the shifts
cause poles in the fermion propagators which are
not properly averaged. This e�ect corresponds
to similar situations in degenerate perturbation
theory where small perturbative shifts can cause
large e�ects due to small energy denominators.
In this case it is known that it is essential to
expand around the exact eigenvalues and com-
pensate the perturbation expansion with counter-
terms in each order. In the present case, a similar
compensation must be made when using Wilson-
Dirac fermions.

We are now able to devise a procedure for cor-
recting the fermion propagators for the artifact
of the visible shifted poles. Consider the fermion
propagator as a sum over the eigenvalues of the
Wilson-Dirac operator (Eq.7). The shifted real
eigenvalues cause poles at particular values of the
hopping parameter. The residue of the visible
poles can be determined by computing the prop-
agator for a range of kappa values close to the
pole position and extracting the residue for the
full propagator. With this residue we can de�ne a
modi�ed quenched approximation by shifting the
visible poles to � = �c and adding terms to com-
pensate for this shift. Although simply shifting
visible poles to �c would correct for the leading
e�ects, it may distort an ensemble average. Since
we are only able to identify poles with positive
mass shifts, we have compensated a visible pole
with one shifted to negative mass. These neg-
ative shifts do not generate singularities in the
fermion propagators computed for positive mass
values and are expected to cancel against poles
with negative shifts generated by other con�gu-
rations in the ensemble. With this procedure, we
do not expect any large renormalization of �c due
to the shifting procedure.
The full MQA fermion propagator may be sim-

ply computed by adding a term to the naive
fermion propagator which incorporates a com-
pensated shift of the visible poles. The modi�ed
propagator is given by

SMQA(x; y; fU (A)g) � S(x; y; fU (A)g) (11)

+ apole(�)� respole(x; y)

where

apole(�) � �
1

u� upole
+

2

u
�

1

(u+ upole)
(12)

(At large mass the �rst two terms in the expan-
sion in 1=u are not modi�ed and terms linear in
the shifts should average to zero), and

respole(x; y) � fpole(x; U )�gpole(y; U ) (13)

= lim
u!upole

(u� upole) � S(x; y; fUg)

The residue of each pole is extracted by calculat-
ing the propagator at upole�� and upole+� with
� � 10�5 where the pole position, upole, has been
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accurately determined from the integrated pseu-
doscalar charge measurement.
It is important to note that the artifact is the

appearance of visible poles at positive mass, not
the existence of small or real eigenvalues. It is
only the visibility that we have corrected by ap-
pealing to the correct behavior in the continuum
limit.

5. Applications

MQA quark propagators may now be used in
place of the usual quenched propagators. The
suppression of the large uctuations normally
associated with the exceptional con�gurations
greatly reduces the errors associated with the
propagation of light quarks. The most sensitive
physical quantities are those associated with the
chiral limit: the pion propagator, the hairpin cal-
culation for the �0 mass and topological quanti-
ties.
We have determined �ts to the pion mass,

m� , and coupling amplitudes, jALj and jAS j;
using pion propagators computed with the lim-
ited statistics of the 50 gauge con�gurations on
a 123 � 24 lattice at � = 5:9. We simul-
taneously �t the three pion two-point correla-
tors LS(local-smeared), SL(smeared-local) and
SS(smeared-smeared) to a common pion mass.
Each two-point pion correlation function, G��(t)
has the form:

G��(t) = jAj2
cosh(m� (T=2� t))

cosh(m�T=2)
(14)

We determine �ts using 200 bootstrap sets of 50
con�gurations, In Figure 4, scatter plots compare
the uctuations and correlations for Wilson-Dirac
fermions before and after using the MQA analysis
for � = 1:590. It is clear that the MQA analysis
greatly reduces the uctuations and produces a
more tightly correlated �t for the mass and decay
constant. For the lighter quark masses, it is clear
that the normal analysis would not be limited by
statistics but by the frequency of exceptional con-
�gurations associated with visible poles. How-
ever, the MQA analysis cures this problem and
higher statistics would now greatly improve the
accuracy of computations with light mass quarks.

0 0.05 0.1 0.15 0.2 0.25

mπ

4

6

8

10

12

14

|A
S
|2

50 confs
Wilson β=5.9 123x24

unshifted
shifted

Figure 4. Pion mass, m� , and smeared coupling
amplitude, jASj for each of 200 bootstrap sam-
ples. Naive (open circles) and MQA (solid dots).

In Figure 5, we plot the square of the mea-
sured values of the pion mass (for the Clover ac-
tion) against the average of the quark masses,
ml � (mq1 + mq2)=2, for the naive and MQA
analysis, respectively. The large uctuations in
the naive analysis come when one or both of the
quarks are light. The masses determined from
the MQA analysis seem to give a good �t to a
nearly linear behavior. For general power law
form, m2

� = A(ml � B)C , A = m2
�=ml = 7:45

and C � 1:1. For the naive Wilson action, the
slope (A = m2

�=ml = 4:30) is in good agree-
ment with previous measurements[13]. The MQA
�tted �c = 0:159725 is very close to the value
�c = 0:15972 obtained from the standard anal-
ysis. The small shift in �c reects our use of a
compensated shift for the visible poles and the
linearity observed in our mass �ts.
A detailed high statistics study on a variety of

lattices of these quenched chiral logs as well as the
hairpin propagator and associated �0 mass [14].
is underway. Preliminary results indicate that
the MQA will allow a direct determination of the
power law coe�cient, C = 1=(1 + �) in the re-
lation between M2

� and ml by using very light
quark masses.

6. Conclusions

The Wilson-Dirac operator has exact real
modes in its eigenvalue spectrum. In the
quenched approximation, these real modes can
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Figure 5. Pion mass plots for Clover action: (a)
naive (open circles) and (b) MQA (dots). A
power law �t is also shown.

generate unphysical poles in the valence quark
propagators for physical values of the quark mass.
These poles can produce large lattice artifacts and
are the source of the exceptional con�gurations
observed in attempts to directly study QCD in
the light quark limit.
The Modi�ed Quenched Approximation iden-

ti�es and replaces the visible poles in the quark
propagator by the proper zero mode contribution,
compensated to preserve proper ensemble aver-
ages. All usual physical quantities can be com-
puted with only a modest overhead cost required
to apply the full MQA analysis. It allows sta-
ble quenched calculations with very light quark
masses and reduces the errors even in the case of
heavier quark mass. Exceptional con�gurations
are eliminated and hence errors can be meaning-
fully reduced by using larger statistical samples.
The usual O(a) improvement program does

not remove the problem of visible poles and ex-
ceptional con�gurations. Indeed, we �nd the
same size spread of the real eigenvalues for both
Wilson-Dirac and Clover actions at the same lat-
tice spacing. This suggests the MQA analysis

may be an essential ingredient in realistic appli-
cations of improved actions on coarse lattices.
Resolving the problem of exceptional con�g-

urations removes a major obstacle to studying
quenched lattice QCD with Wilson fermions in
the light quark limit.
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